
Resource Management Schemes for Distributed
Postgres database in cloud native environment

1st Md Awsaf Alam
Dept. of CSE (MSc.)

Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

0421052071@grad.cse.buet.ac.bd

2nd Dr. Anindya Iqbal
Dept. of CSE (Professor)

Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

anindya iqbal@yahoo.com

Abstract—In this paper, we compare different resource man-
agement strategies for deploying a Postgresql database. We
analyze which workload will be more suitable for

Index Terms—postgresql, kubernetes, docker, aws, distributed
database.

I. INTRODUCTION

Managing cloud infrastructure effectively is a big pain point
for most companies[1]. Early Infrastructure decisions can have
a long term impact for scalability. As new cloud services
and frameworks emerge, proper benchmarking comparisons
become vital for making effective architecture decisions. In
this paper we try to discuss the challenges faced during setting
up a distributed Postgres database in a cloud environment,
and benchmark different state-of-the-art methods to determine
which type of deployment is best suited for each workload.
This research work will help Engineers decide very early on
what kind of infrastructure support they will need to properly
scale a system in production for a given predicted workload.

II. MOTIVATION

Modern computing systems have to be built with scalability
in mind. If we abstract out all the details for the sake
of simplicity, most software development happens in simple
client-server architectures. The client sends a request to the
server for a specific data, the server then queries the database
for this data, and on some occasions further processes the data.
This processed data is then sent to the client as a response for
the http request. (Figure 1)

However, we know that in a real live system, there will
be multiple clients will could simultaneously send requests to
the server. Hence the server needs to be scalable to handle the
load, and subsequently, the database also needs to be scaled,
in order to handle the enormous load of queries coming from
the server. In modern systems therefore, both the server and
data base are hosted in the cloud. Cloud services provide the
opportunity for developers to scale a system rapidly without
having to focus on the hardware complexities. Therefore
the hardware is completely abstracted out from the software
development process.

In this study we deal with the database layer and identify the
best possible methods for managing cloud resources for a dis-
tributed database on the cloud. We compare distribued versus

Fig. 1. Basic Client Server Architecture

non distributed approach and also compare the containerized
versus non-containerized approach.

Fig. 2. Containerization

III. RELATED WORK

A. CNSBench

we use the cnsbench tool to benchmark against a set of
workloads. we mainly benchmark using two types of work-
loads. Control Workloads and I/O Workloads.

We may define Control Workloads as:
• Combination of actions and rates
• Actions execute operations, for instance create resource

(e.g., create Pod or Volume), delete resource (e.g., delete

snapshot), snapshot volume, and scale resource (e.g.,
scale database deployment)

• Rates trigger associated actions at some interval

CNSBench treats control workloads as first class citizens,
and we can run cnsbench inside our deployed kubernetes
cluster and define the specification for the different control
workloads.

CNSBench allows the usage of external I/O workloads
so it’s very easy to use existing workload datasets with
CNSBench. Control operations impact the I/O workloads.

For example, volume creation often requires:

• Time-consuming file system formatting,
• Volume resizing, which may require data migration and

updates to many metadata structures
• Volume reattachment

So, in summary, CNSBench contains Separate I/O work-
loads and control workloads, and uses existing tools to gener-
ate I/O workloads. We can Specify and create realistic control
workloads with Easy to define and run benchmarks

B. Resource Management Schemes for Cloud Native Plat-
forms with Computing Containers of Docker and Kubernetes

• Comparative analysis of resource management for Cloud
Native Platforms

• Deep learning framework and big data processing

C. Benchmarking geospatial database on Kubernetes cluster

Compare PostgreSQL for clustered vs non-clustered envi-
ronments.

• PostgreSql
• Clustered and non-clustered based system

IV. METHODOLOGY

Our main objective is to understand challenges in deploying
a Distributed Database, and develop strategies on how to
manage resources effectively in a cloud environment. For this,
we will evaluate the trade-offs between docker & kubernetes
for distributed PostgreSQL database deployment. During our
research work, we compared 3 different types of approaches.

1) Non-clustered approach
2) Dockerized Deployment
3) Using a Kubernetes cluster

Initially we deploy our Postgres database in all 3 envi-
ronments, and test out different scenarios. We want to find
out what kind of workload would be best suitable for each
deployment method.

For measurement, we use the existing Benchmarking tools
to specify which workloads to use. Then we develop novel
resource management strategy for Kubernetes, specifically for
PostgreSQL for different workloads.

A. Setting up a cluster in AWS

We use AWS for running all our experiments as it is one
of the most widely used cloud providers available, and also
provides a free tier for students or research purposes.

In order to setup a cluster in AWS, initially we need to
configure a Virtual Private Cloud (VPC). Amazon Virtual
Private Cloud (Amazon VPC) enables us to launch AWS
resources into a virtual network based on our custom config-
urations. This virtual network closely resembles a traditional
network that we’d normally operate in a data center, with the
benefits of using the scalable infrastructure of AWS as well
as reducing the hassle of needing our own physical hardware
for running different experiments.

Fig. 3. AWS Management Console

We can create a VPC inside the AWS management console
(Fig 3). Once the VPC is created (Fig: 4, we need to do the
configurations in order to ensure that the cluster can be setup
properly. Next we attach an Internet Gateway (IGW) to the
VPC instance. An internet gateway is a horizontally scaled,
redundant, and highly available VPC component that allows
communication between the VPC and the internet. Without
the IGW, we would not be able to communicate with the
containers inside the VPC.

Fig. 4. AWS VPC

Finally, we configure two subnets (Fig: 5) inside the VPC
within the same CIDR block as the VPC and launch instances

inside the subnets. We also setup the route tables and make
sure all the security groups are properly added so that the
different nodes within the cluster do not have any difficulty
while communicating. Therefore, we can summarize the steps
for setting up a full cluster from scratch as specified below:

Fig. 5. AWS Subnet

1) Create a VPC
2) Create an IGW
3) Attach IGW to VPC
4) Create a subnet inside a VPC
5) Launch VM inside subnet (Master and worker nodes)
6) Traffic is routed from the igw through subnet into the

VM.

For setting up the VMs, we use a t2-medium instance as
master node, and the rrest of the worker nodes of the cluster
can be t2-micro nodes. Here are the steps we followed for
launching a Vm inside our pre-configured VPC instance:

1) Select the type of instance we want
2) Select the Operating System
3) Select the VPC, Subnet, Storage etc other details
4) Specify the Security Group
5) Add a tag to the VM for consistency
6) Finally, add a new key pair for ssh access.

Once the instances are created, we can start installing
kubernetes in the virtual machines in order to configure them.

B. Installing Kubernetes and network configurations

Steps for initializing kubernetes in the VM

1) Install Docker: sudo apt update sudo apt install docker.io
-y

2) Enable Docker Service sudo systemctl start docker sudo
systemctl enable docker

3) Installing dependencies for https and cURL sudo apt
install apt-transport-https curl

4. Add Ubuntu Repository to down-
load Kubernetes services curl − shttps :
//packages.cloud.google.com/apt/doc/apt −
key.gpg|sudoapt − keyadd sudo apt-add-repository ”deb
http://apt.kubernetes.io/ kubernetes-xenial main”

5. Install Kubernetes modules
sudoaptinstallkubeadmkubeletkubectlkubernetes− cni

6. Disable Swap Memory sudoswapoff − a

V. EVALUATION

We consider 3 different types of approaches.
1) Installing Posgres on baremetal machine
2) Intalling Postgres using docker container
3) Installing Postgres in a distributed Kubernetes cluster.
For each experiment, we run a script where the operations

were carried out in the following order:
• First initialize the database and create a table.
• Populate the table with 10,000 write requests simulat-

neouly and calculate the latency
• Do this for all the deployment environments.
• Read the data at random intervals, with random number

of simultaneous read requests.
For each of the experiments we observed the completion

time. The same experiment was carried out multiple times
and the average was taken. From here, we can deduce that for
Bare metal deployment, the latency increases exponentially a
the number of simultaneous requests increases, while in case
of a clustered deployment, the increase is linear.

VI. FUTURE WORK

The amount of different variations of experiments that can
be carried out is almost unlimited. So it is very important
to know first which workloads are actually important to the
developers. for that we need to carry out an empirical study.

CNSBench does not offer compatibility with all the other
postgres operators available on the market. so another work
would be Customizing benchmarking tool for applying on
other operators to get quantitative data and a more clear picture
of the current scenario of postgres kubernetes operators.

Empirical study to understand which factors developers are
actually considering before making decisions is also very
important. most of the architectural decisions made have a
lot of long-term implications. So it is very important that we
take those into account and run the experiments accordingly.

REFERENCES

[1] https://www.packtpub.com/product/hands-on-serverless-
computing/9781788836654

[2] MapReduce: Simplified Data Processing on Large Clusters
[3] https://www.cloudflare.com/learning/serverless/what-is-serverless/
[4] Jiffy: A virtual memory abstraction for server- less architectures
[5] https://github.com/resource-disaggregation/jiffy
[6] MapReduce Basics: https://www.youtube.com/watch?v=cvhKoniK5Uo

[7] NIMBLE Task Scheduling Slides:
https://www.usenix.org/system/files/nsdi21slideszhang − hong.pdf

