
1

Not So Fast:  Analyzing the Performance of 
WebAssembly vs. Native Code

Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha, University of 
Massachusetts Amherst

This paper is included in the Proceedings of the 2019 USENIX Annual Technical Conference. July 
10–12, 2019 • Renton, WA, USA

Presented By:  Md Awsaf Alam [0421052071]



2

WebAssembly Background

JavaScript is an interpreted language that requires a runtime engine to 
execute, which can lead to performance overhead and slow startup times 
for web applications. On the other hand, web applications have grown 
more and more complex over time. 

With the rise of web applications that require high-performance computing, 
such as games, simulations, and audio-video software, a solution was 
needed which provided both efficiency and security on the web.



3

Comparison of Inference Times
Tensorflow.js vs Native



4

Solutions prior to WebAssembly

Technology Compiled Format Speed Portability Security

ActiveX code-signed-binary Fast Not Portable Not Secure

Native Client & Native 
Portable Client NACI module Fast Not Portable (only 

supported in Chrome) Safe

Emscripten* asm.js
(subset of js0

Faster than JS 
but Slower 
than Native

Portable Safe

Emscripten* - does not support 64-bit integer, and has larger code size

While these technologies have their own strengths and weaknesses, WebAssembly has emerged as a 
widely adopted solution for running performance-critical code on the web platform. It provides a 
portable, safe, and fast runtime environment for multiple languages and has broad support across 
major web browsers.



5

Webassembly
WebAssembly was released in 2017. All major web browsers now support WebAssembly. It is a 
lowlevel bytecode intended to serve as a compilation target for code written in languages like C, 
C++, Rust & GO etc. It offers portability along with performance and security.



6Photo by Pixabay

WebAssembly Features 

● Safety: WebAssembly provides a sandboxed 
execution environment for running code in a 
web browser, which helps protect user data 
and system integrity by isolating the code 
from the rest of the system.

● Performance: Low-level code emitted by a 
C/C++ compiler is optimized ahead-of-time 
for full machine performance.

● Portability: Essential for code targeting the 
Web to run across all hardware and platform 
types.

● Compact code: Crucial for reducing load 
times, saving bandwidth, and improving 
responsiveness on the Web.

https://pixabay.com?ref=SlidesAI.io


7

Is WebAssembly Fast?

Fig:  Relative execution time of the PolyBenchC
benchmarks on WebAssembly normalized to native code

Bringing the Web up to Speed with WebAssembly[1]

According to the paper that 
Introduced WebAssembly[1] their 
evaluation on polybenchC 
benchmarks and found that:

WebAssembly is only 26% slower 
than Native Code.

https://dl.acm.org/doi/pdf/10.1145/3062341.3062363


8

Is WebAssembly Fast?

Fig:  In 2017 [2], seven benchmarks performed within 1.1× of 
native. 
In April 2018, 11 performed within 1.1× of native. 
In May 2019, 13 performed with 1.1× of native

Bringing the Web up to Speed with WebAssembly[1]

There have been continuous 
improvements in webassembly 
implementation, and we have 15 
benchmarks within 10% of native 
performance.

https://www.researchgate.net/figure/Number-of-PolyBenchC-benchmarks-performing-within-x-of-the-native-In-2017-seven_fig1_340348516
https://dl.acm.org/doi/pdf/10.1145/3062341.3062363


9

But, polybenchC Benchmarks are not very practical!

The authors tried using SPEC CPU suite of benchmarks - applications compiled to 
WebAssembly run slower by an average of 45-55%

PolybenchC only includes small scientific computing kernels rather than full 
applications (e.g., matrix multiplication and LU Decomposition); each is roughly 100 
LOC.

Browser Average Slowdown Peak Slowdown

Firefox 45% 2.08×

Chrome 55% 2.5×



10

Results
According to the benchmark results, there is a significant speed difference between 
WebAssembly and native code.



11

SPEC-CPU Benchmark

● The WebAssembly documentation lists a number of targeted use cases, including 
simulations, programming language interpreters, virtual machines, POSIX programs, 
image editing, video editing, image recognition, and image editing.

● The high performance of WebAssembly on the scientific kernels in PolybenchC does 
not, therefore, suggest that it will perform well given a different sort of application.

Problem:

● Not possible to compile a sophisticated native program to WebAssembly. (system 
call & file systems not supported in browser)

● Modifying the benchmark code would be a threat to validity of the experiments.

Solution:  BROWSIX-WASM



12

BROWSIX-WASM: 

Extension to Browsix [ provides system-calls for web apps in JS ] to run unmodified 
WebAssembly-compiled Unix applications directly inside the browser.

BROWSIX-SPEC: 

A harness that extends BROWSIX-WASM to allow automated collection of detailed timing and 
hardware on-chip performance counter information in order to perform detailed measurements 
of application performance.

KEY CONTRIBUTIONS



13

Browsix
Browsix bridges the gap between conventional operating systems and the browser, enabling 
programs expecting a Unix-like environment to run directly in the browser. 

By mapping current browser APIs, such as Web Workers and postMessage, onto low-level Unix 
primitives, such as processes and system calls, Browsix does this.

- Browsix only supports JS, not WASM

- Browsiz uses SharedArrayBuffer for 
process-kernel communication which WASM 
does not support.



14

Compilation of Browsix-wasm

Generates WebAssembly binary embedded in a JS module with Browsix-WASM runtime.

Browsix-WASM Runtime provides:
● Libmusl C library
● Communication with Browsix-WASM kernel



For every systemcall, the buffer is updated with the latest version of WASM Memory

Unfortunately this has high copying overhead and 2x memory usage.

15

Shadow Copy of WebAssembly memory



● Only the referenced data is copied. 
● For more than 64Mb, a single systemcall is split into several messages.
● This has minimum execution and memory overhead.

16

Auxiliary buffer for process-kernel communication



17

Browsix-SPEC workflow

1. Launch new browser instance using 
WebBrowser automation tool (selenium)

2. Load page's HTML, harness JS, and 
BROWSIX-WASM kernel JS over HTTP

3. Initialize BROWSIX-WASM kernel and start 
new BROWSIX-WASM process executing 
the runspec shell script

4. XHR request to BROWSIX-SPEC to begin recording 
performance counter stats

5. Attach perf to Chrome thread corresponding to Web Worker 
process 401.bzip2

6. Final XHR to benchmark harness to end perf record process

7. POST tar archive of SPEC results directory to 
BROWSIX-SPEC after runspec program exits, and validate 
output.



18

Challenges of JIT Compiler

● Fast but Poor register allocation

● Fast but Poor instruction selection

● Extra branches

● Does not use all x86 addressing modes

● Stack overflow checks (for safety)

● Indirect function call check (for safety)



19

Matrix Multiplication

● Chrome generated code has 2x 
more instructions

● Not using all x86 addressing modes
● Chrome uses 3 more registers than 

clang.
● Extra jumps for chrome



20

Performance Analysis

Code generated by Chrome has 2.02× more load instructions retired and 2.30× more store instructions 
retired than native code. WebAssembly compiled SPEC CPU benchmarks suffer from increased 
register pressure and thus increased memory references.



21

Performance Analysis

In Chrome 1.75× and 1.65× more unconditional and conditional branch instructions retired 
respectively. So, all the SPEC-CPU benchmarks incur extra branches, 



22

Conclusion
The authors developed BROWSIX-WASM, a significant extension of BROWSIX, and 
BROWSIX-SPEC, a harness that enables detailed performance analysis, to let them run the 
SPEC CPU2006 and CPU2017 benchmarks as WebAssembly in Chrome and Firefox. [Better 
alternative to PolybenchC

They found that the mean slowdown of WebAssembly vs. native across SPEC benchmarks is 
1.55× for Chrome and 1.45× for Firefox, with peak slowdowns of 2.5× in Chrome and 2.08× in 
Firefox.

They provided actionable insights on how this performance could be improved.



23

Future Work & Criticisms

● Authors have not considered any other instruction set other than intel. [ e.g ARM ]

● More time could be provided to the optimizer - trade off between JIT compilation and Static 
compilation.

● Variations of output code for different source languages was not observed.



24

References
1. Bringing the web up to speed with WebAssembly - PLDI 2017: Proceedings of the 38th ACM SIGPLAN Conference on 

Programming Language Design and Implementation. June 2017. Pages 185–200 https://doi.org/10.1145/3062341.3062363
2. Browsix - https://browsix.org/
3. Khan, Faiz and Foley-Bourgon, Vincent and Kathrotia, Sujay and Lavoie, Erick. [n.d.]. Ostrich Benchmark Suite. 

https://github.com/Sable/Ostrich
4. Lei Lopez. 2015. Halophile: Comparing PNacl to Other Web Technologies. (2015).
5. Bobby Powers, John Vilk, and Emery D Berger. 2017. Browsix: Bridging the gap between Unix and the browser. ACM SIGOPS 

Operating Systems Review 51, 2 (2017), 253–266.
6. David Sehr, Robert Muth, Cliff L Biffle, Victor Khimenko, Egor Pasko, Bennet Yee, Karl Schimpf, and Brad Chen. 2010. Adapting 

software fault isolation to contemporary CPU architectures. (2010).
7. Christian Wimmer and Michael Franz. 2010. Linear scan register allocation on SSA form. In Proceedings of the 8th annual 

IEEE/ACM international symposium on Code generation and optimization. ACM, 170–179.
8. Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and 

Nicholas Fullagar. 2009. 
9. Native client: A sandbox for portable, untrusted x86 native code. In 2009 30th IEEE Symposium on Security and Privacy. IEEE, 

79–93.

https://dl.acm.org/doi/pdf/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://browsix.org/
https://github.com/Sable/Ostrich


25

Thank you. Please feel free to ask any questions. 😄


